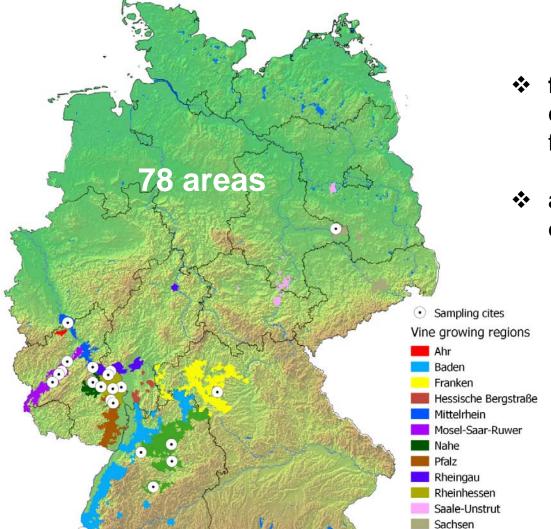


Federal Research Centre for Cultivated Plants


"Gibt die langjährige Anwendung von Kupfer im Rebschutz Anlass zur Sorge für Bodenorganismen?"

"Is the longstanding application of copper in vineyard protection a cause for concern for soil organisms?"

Nadine Herwig, Dieter Felgentreu & Bernd Hommel

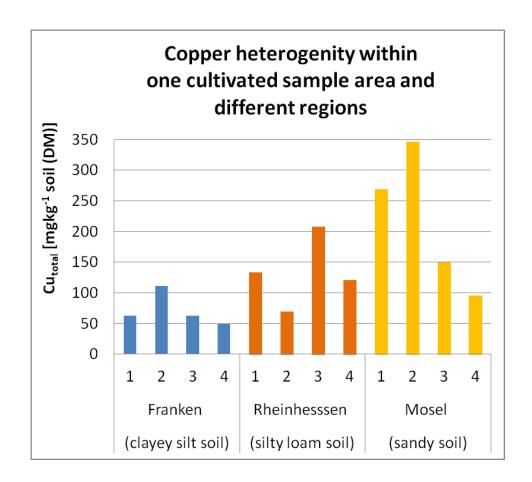
Copper research at JKI-ÖPV

- fate, exposition and impact of Cu in vineyards to provide field data
- assessment of risks of Cu on soil organisms

Württemberg

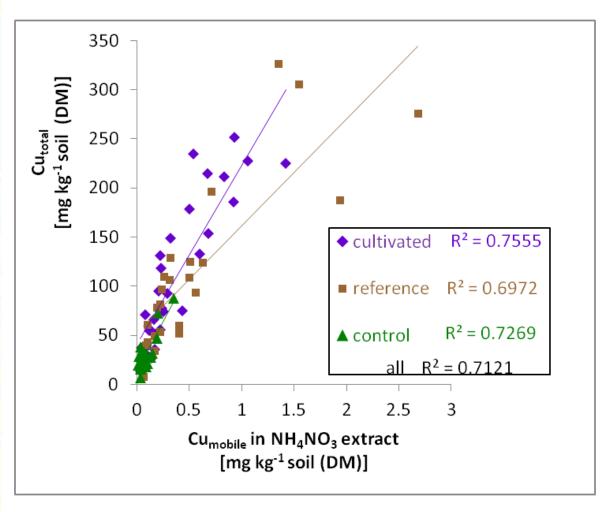
Ivestigated parameters

Soil (pedological parameter, metal content and mobility)


Earthworm comunities
(habitat, diversity, copper accumulation)

Microorganism (sum and activity parameters)

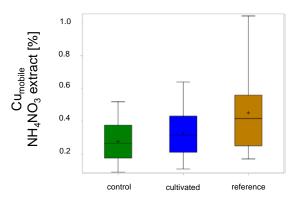
Results of the field study - FATE



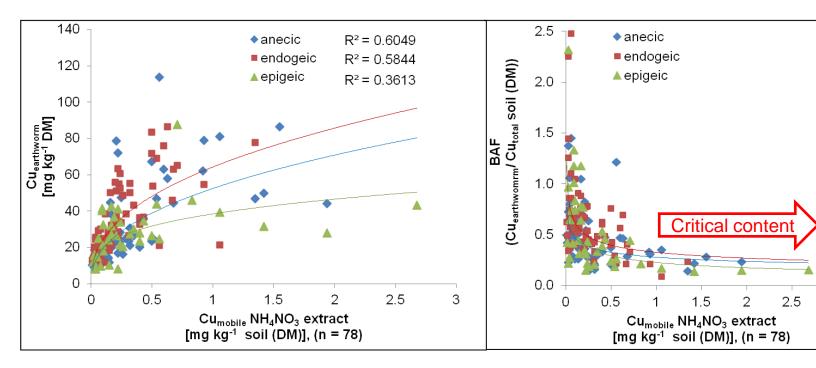
Heterogenaous copper distribution within a sampling area and between different wine growing regions

Results of the field study

Exposition



- A higher Cu_{total} content lead to higher Cu_{mobile} content in soil
- The percentage Cu_{mobile} content is less than 1%

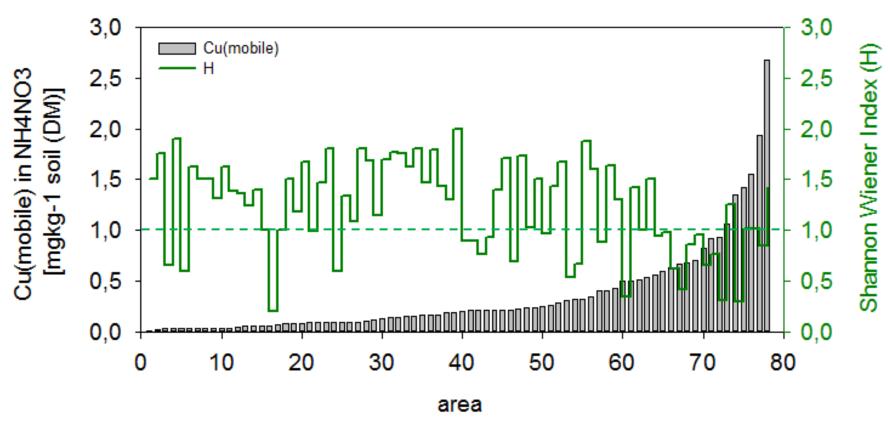

Multifunctional relations!

Results of the field study – Impact on earthworms

➤ A higer Cu_{mobile} content in soil leads to higher Cu_{earthworm} content and decreasing BAF for all life forms

"LIMIT" Cu_{earthworm} < 87 mg kg⁻¹ DM

"critical value" Cu_{mobile} ≥ 1 mg kg⁻¹ DM (in NH₄NO₃ extract)


Results of the field study

Impact on earthworms

Earthworm diversitiy in dependence of the Cu mobility

> Earthwom diversity (H) is independent from Cu_{mobile} in soil

Results of the field study

- Total impacts

Spearman Correlation

high	significant	moderate	low		moderate	significant	high		
-1	-0.8	-0.5	-0.2	0.2	0.5	0.8	1		

lг				Pedological parameter										Element contents									
				рН	C	N	C/N	org.S	H ₂ O	CEC	sand	clay	silt	Cu _{total}	Cu _{mobile}	Zn _{total}	Zn _{mobile}	Cd _{total}	Cd _{mobile}	V _{total}	V _{mobile}	Mo _{total}	Mo _{mobile}
Micro-	П	ပ	biomass																				
		epigeic	abundance																				
		<u>e</u>	species number																				
	ſ	o	biomass																				
	<u></u>	anecic	abundance																				
		6	species number																				
	בוב [ic	biomass																				
	"	endogeic	abundance																				
	L	e	species number																				
		spe	cies number (total)																				
		а	bundance (total)																				
			SW-Index (H)																				
	ms		qCO₂																				
	organisms		C _{mlc}																				
ľ	O.		DHA																				

Are there any concerns of the future application of Cu PPPs?

NO!

Because our results show:

- ➤ Low Cu_{mobile} contents (< 1% of Cu_{total})
- > Adapation of soil organisms (coevolutin, tolerance, resistence) in Cu altered areas
- Heterogenous copper distribution within a sampling area supports resilience of soil organism population
- Impacts due to other parameters (e.g. pedological, management, and toxic elements)
- The none-application of Cu-PPPs on contaminated areas would not lead to an ecological improvement

BUT under conditions of:

- Chemical and biological monitoring strategies for areas of concern need to be improved
- Management measures should developed to compensate negative effects of copper pesticides to soil organism

