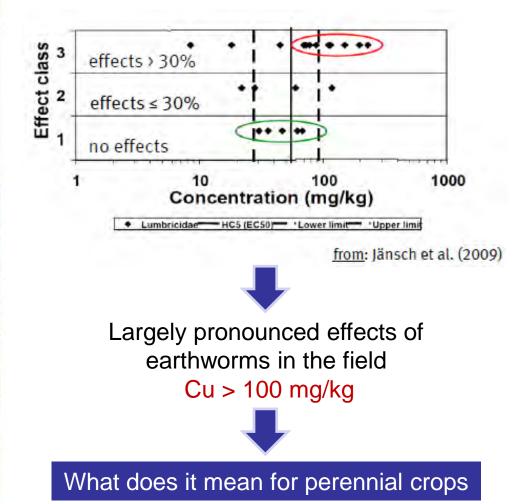
3rd European Conference on Copper in Plant Protection 15th-16th November in Berlin, Germany

BOLW MORE Bund Ökologische Lebensmittelwirtschaft EU GROU Julius Kühn-Institut ORGANIC Bundesforschungsinstitut für Kulturpflanzen

Bundesforschungsinstitut für Kulturpflanzen Federal Research Centre for Cultivated Plants

Copper risk minimization – lessons from history and future prospects – results and consequences from field studies on viticulture, orchards and hops


Nadine Herwig, Bernd Hommel & Dieter Felgentreu

Institut für ökologische Chemie, Pflanzenanalytik und Vorratsschutz Berlin

www.julius-kuehn.de

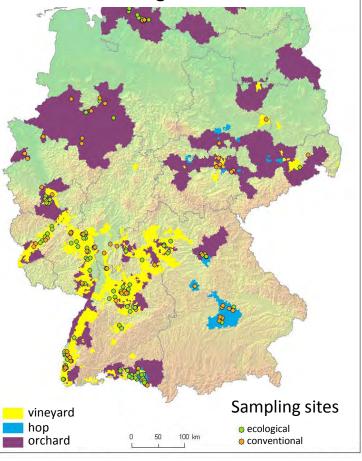
Effects of copper to earthworm community

- Estimation of the risk for soil organisms and their function in the field in viticulture.
- Presentation of the ecological situation at viticulture, orchards and hop, in consideration of the already existing high copper load.
- Assessment of the suitability of laboratory tests for the interpretation and specification of field surveys.

Copper study at JKI, 2009 - 2011

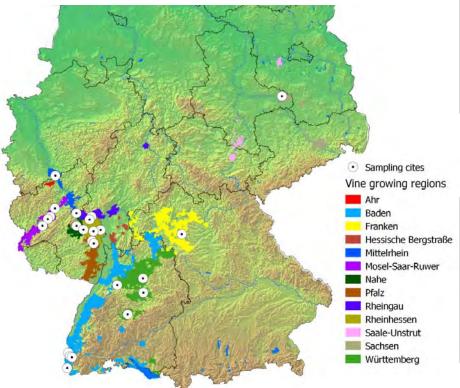
Chemical survey 1 - Pollution and exposition

Vineyards:


✓ 77 ecological
✓ 40 conventional
✓ 73 fallows
✓ 88 controls

Orchards: ✓ 57 ecological ✓ 30 conventional ✓ 39 fallows ✓ 50 controls

Hops: ✓ 6 ecological ✓ 16 conventional ✓ 12 fallows ✓ 16 controls **5 points** per sampling site 0-5 cm and 5-20 cm depth, with boring rod



Copper study at JKI, 2012 - 2014

Selected vineyards

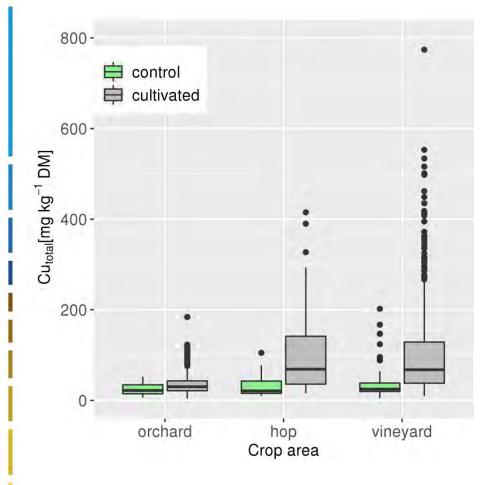
✓ 25 ecological
 ✓ 5 conventional
 ✓ 24 fallows
 ✓ 24 controls

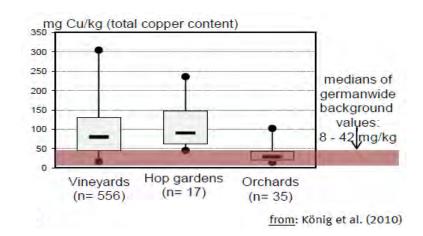
Chemical survey 2 → Total content and mobility of copper of soils

Biological survey → earthworms' distribution and microbial parameters

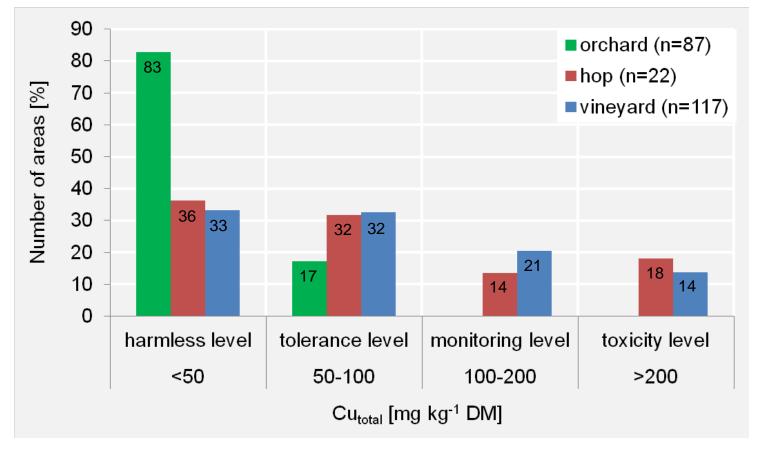
- ✓ 4 points per sampling site
- ✓ 4 x 0,25 m² excavated soil
- ✓ 20 cm depth

Laboratory tests \rightarrow earthworms' behavior, growth and reproduction

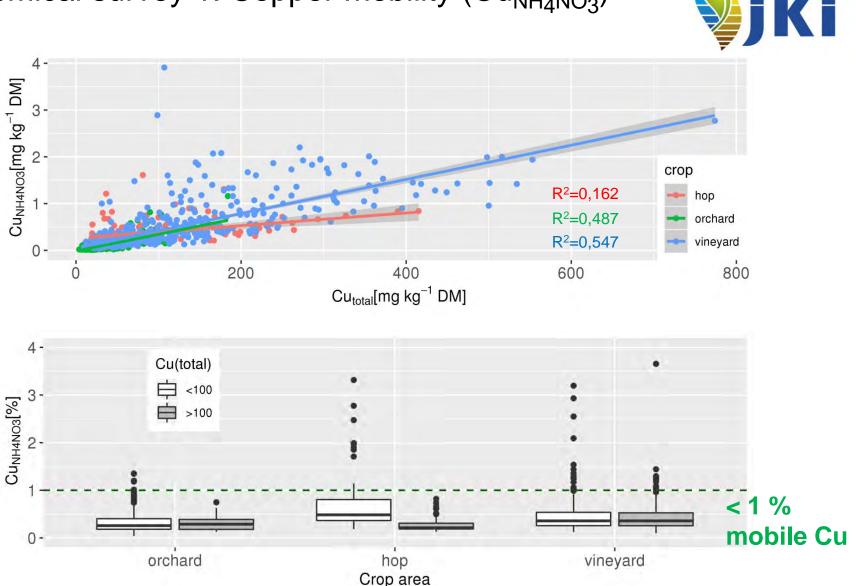


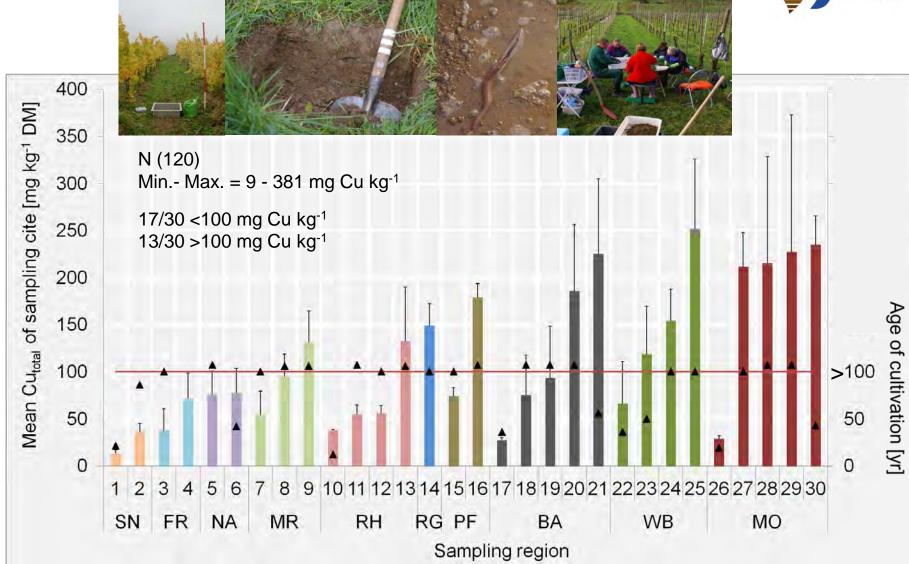


Chemical survey 1: Copper load

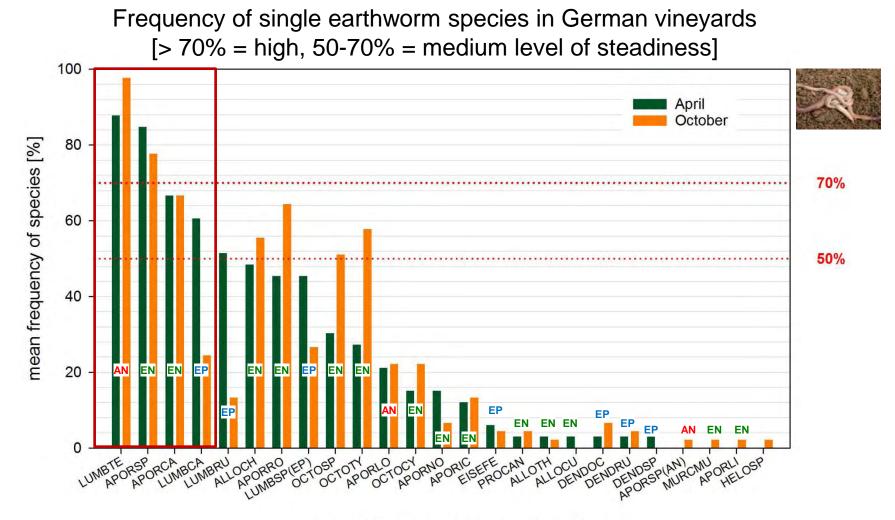


Crop area	Cu _{total} [mg kg ⁻¹ DM] Mean ± SD (n samples) , 20 cm depth								
	Background	Cultivated sites							
Orchard	25 ± 13 (50)	35 ± 22 (423)							
Нор	32 ± 26 (16)	99 ± 83 (110)							
Vineyard	36 ± 35 (88)	102 ± 97 (578)							

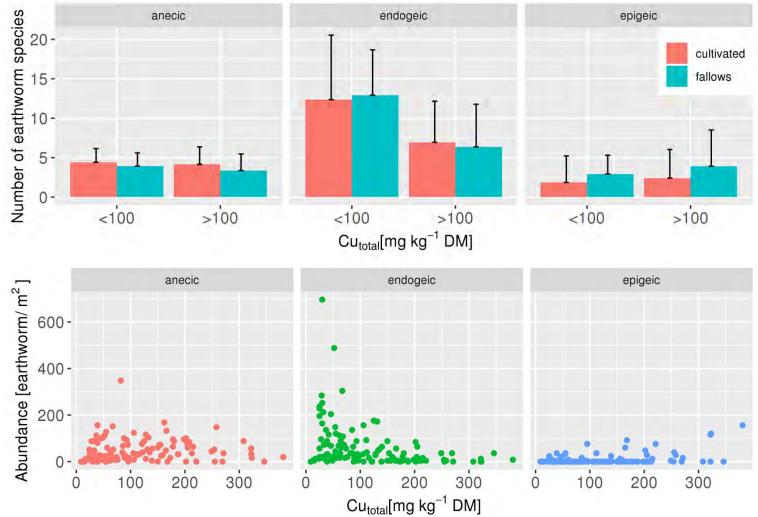

Chemical survey 1: Copper distribution


Classification according to guideline values of Eikmann and Kloke, 1993

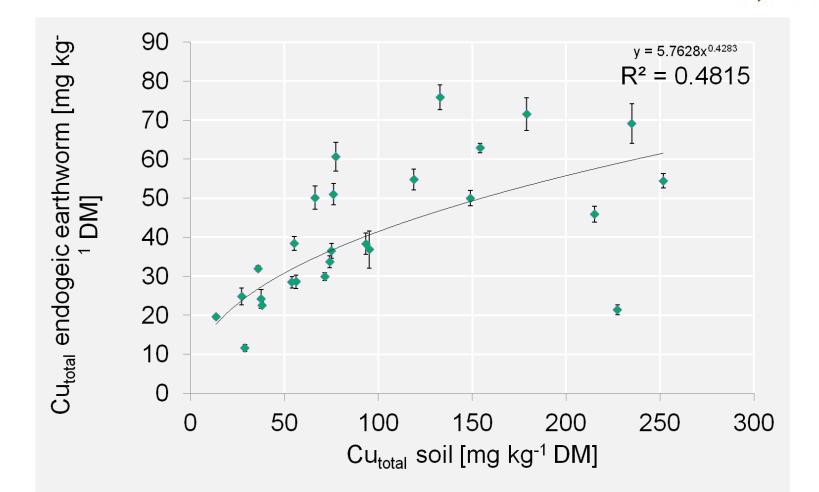
Chemical survey 1: Copper mobility (Cu_{NH4NO3})


Chemical survey 2: Copper load

Biological survey: Main earthworm species in vineyards

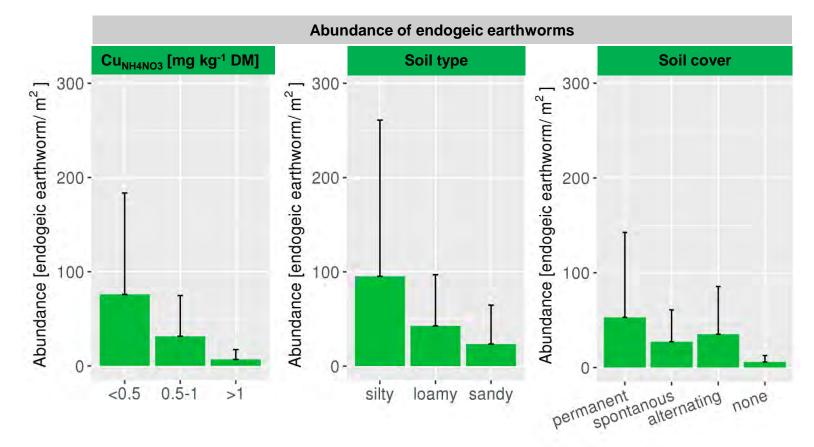


species [abbr. based on EPPO code]


Nov. 15th/16th, 2018

Earthworm species number and abundance per m² of vineyards (20 cm depth)

Biological survey: Copper accumulation in endogeic earthworm tissue



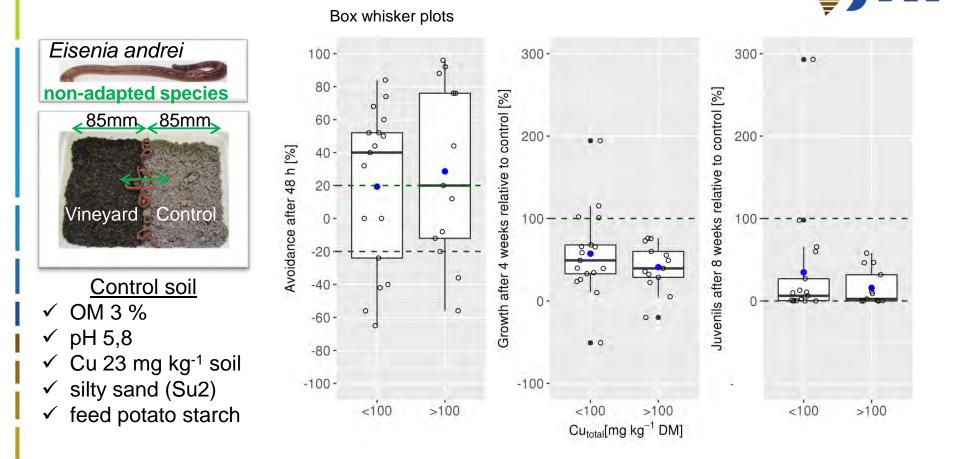
Copper accumulation is limited!

Nov. 15th/16th, 2018

Biological survey: Earthworm abundance per m² of cultivated vineyards in relation to soil parameter

Complex relationships!

Biological survey: Total impacts on soil organisms


Spearman Correlation												
high	significant	moderate	low		moderate	significant	high					
-1	-0.8	-0.5	-0.2	0.2	0.5	0.8	1					

			Pedological parameter										Element contents					
	-		рН	С	Ν	C/N	OM	H ₂ O	CEC	sand	clay	silt	Cu _{total}	$\mathbf{Cu}_{\text{mobile}}$	Zn total	Zn _{mobile}	Cd _{total}	Cd _{mobile}
		biomass																
	epigeic	abundance																
	e	species number																
ШS		biomass																
Earthworms	anecic	abundance																
Earl		species number																
	<u>e</u> .	biomass																
	endogeic	abundance																
	en	species number																
. 8	2	qCO ₂																
Micro- organisms	2	C _{mic}																
		DHA																

Multifunctional impacts on soil organisms!

Nov. 15th/16th, 2018

Laboratory tests: Avoidance – Growth - Reproduction

Avoidance test (based on ISO 17512-1: 2008: -20 until 20 % equal distribution between control and vineyard soil Reproduction test with *Eisenia andrei* (based on OECD 222: 2004): >100% = better than control and vice versa

Nov. 15th/16th, 2018

FAZIT 1: Lessons from history

In the perspective of chemistry

Copper is quickly bound in soil, therefore very low mobility!

- Mobility in most cases <1%, depending on site specific factors (pH-value, organic matter, aging) and climatic conditions
- ✓ Heterogeneous distribution of copper is common
- ✓ Copper content: orchards < hop ≤ vineyard</p>

In the perspective of biology

Earthworms still exist! → copper distribution, adaptation, compensation, behaviour

- ✓ Effect concentration <100 mg Cu kg⁻¹
 - \rightarrow No effects
- ✓ Effect concentration >100 mg Cu kg⁻¹ (maximum level of 381 mg Cu kg⁻¹ soil)
 - \rightarrow Halving of endogeic species numbers and low abundance
 - → Anecic and epigeic species numbers and abundances are unaffected
- ✓ Earthworms and microorganisms are pretty influenced by multifunctional factors
 → Texture, soil cover, organic matter, moisture, other heavy metals

FAZIT 2: Future prospects in case of 28 kg ha⁻¹ until 2025

In the perspective of chemistry

Historic copper load will influence significantly future observations!

- Precision spraying increases heterogeneity
 - → It promotes and secures "COMFORT ZONES", mainly between rows
- ✓ Based on current knowledge about sampling sites
 - \rightarrow Establishment of a chemical survey to monitor areas below or near 100 mg Cu kg⁻¹ soil
 - → It doesn't make sense to monitor sites with >150/200 mg Cu kg⁻¹ soil, because of the very high historical copper load

In the perspective of biology

Effects on endogeic earthworms have to be monitored!

- ✓ Based on the chemical monitoring
 - → If the 100 mg Cu kg⁻¹ limit has been exceeded or is near by, biological monitoring should be implemented
- ✓ Soil cover enhances earthworm populations and should be mandatorily used generally
- ✓ The none-application of Cu-PPPs on contaminated areas would not lead to an ecological improvement → Nevertheless, we need alternative!

Thank you! for your attention!

AND a big thank to ALL diligent assistants

BÖLN

Bundesprogramm Ökologischer Landbau und andere Formen nachhaltiger Landwirtschaft

Projektträger Bundesanstalt für Landwirtschaft und Ernährung