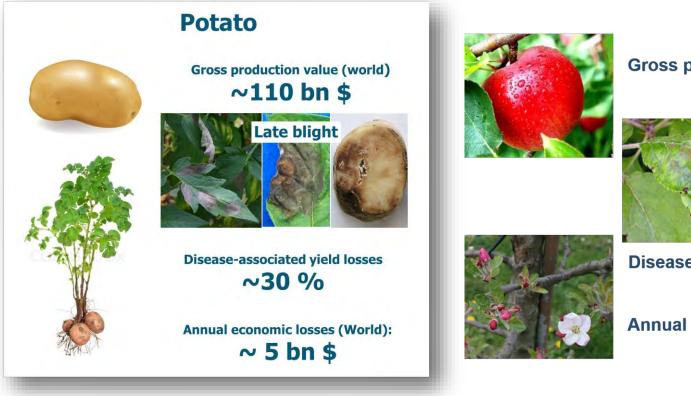
3rd European Conference on Copper in Plant Protection 15th-16th November in Berlin, Germany

BOLW MORE Bund Ökologische Lebensmittelwirtschaft EU GROU Julius Kühn-Institut ORGANIC Bundesforschungsinstitut für Kulturpflanzen

An innovative approach to reduce copper load in horticulture

<u>Shyam Pariyar</u> ^{ae}, Liudmyla Goncharenko ^{bce}, Alexander Töpel^{ce}, Wenzing Xu ^{ce}, Patrick Schwinges ^{de}, Casper Langenbach ^{de}, Uwe Conrath ^{de}, Andrij Pich ^{ce}, Ulrich Schwaneberg ^{bce}, Georg Noga ^{ae}, Felix Jakob ^{bce}

^aUniversity of Bonn, Institute of Crop Science and Resource Conservation, Horticultural Sciences Department, Auf dem Hügel 6, D-53121 Bonn, Germany ^bRWTH Aachen University, Institute of Biotechnology, Worringerweg 3, D-52074 Aachen, Germany ^cDWI - Leibniz-Institut für Interaktive Materialien e.V., Forckenbeckstraße 50, D-52056 Aachen, Germany ^dRWTH Aachen University, Institute of Biology, Worringerweg 1, D-52074 Aachen, Germany ^eBioeconomy Science Center (BioSC), c/o Research Center Juelich, Juelich D-52425, Germany


- 1. Background/problems
 - Plant protection (crop loss, rain wash-off, phytotox)
 - Copper fungicides (pros and cons)
- 2. Copper reduction approaches

3. Summary and outlook

Scenario: Crops vs Pathogens

Apple

Gross production value (world) ~ 52 bn \$

Disease associated yield losses $\sim 70\%$

Annual economic losses (world) ~ 30 bn \$

Cu2+ a.i. in agriculture

- Scottish farmer Sprayed Copper against Mildew (1861) (Smith and Secoy, 1976)
- Bordeaux/Burgundy mixture in Grape (1882/85) (Mason, 1928)

In Germany (since 150 years)

- > Organic farming: 24% (~ 27 tons)
- Conventional farming: 76% (~ 85 tons)
- However, copper used in organic farming > conventional for grape, hop and potatoes. Apple almost similar. (Kühne et al., 2016 JKulturpflanzen, 2017 OrgFarming)

Cu in agriculture: pros and cons

Excess copper: (high dose or rain wash-off)

Harmful to most plants,

Plant beneficial microbiome

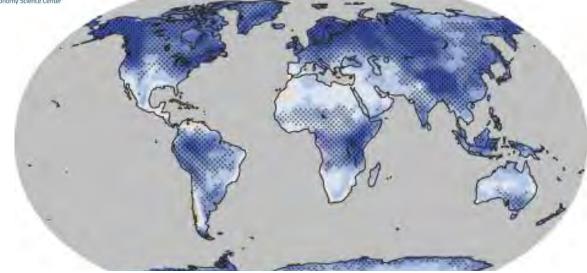
Soil microorganisms, and fauna

Water microorganisms, and fauna

Complete renunciation of copper as a pesticide is not practicable in organic farming.

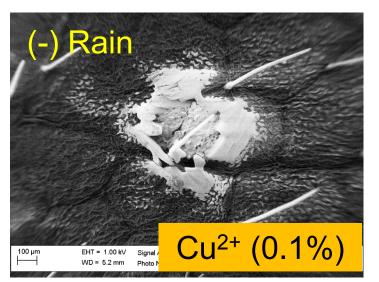
Production of several crops unprofitable.

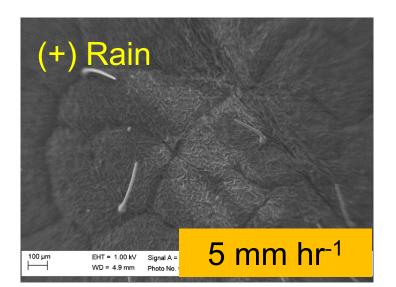
Lead to reconversion to conventional production.


(Gitzel and Kühne, 2016, Kuhne et al., 2017).

Germany: 3 kg Cu/ha INRES

Problem 1: Rainfall vs. Rainfast





Projected increase in precipitation intensity by the end of 21st Century (adapted, IPCC AR4, earthobservatory.nasa.gov)

Change in precipitation intensity (standard deviations)

-1.5 -1 -.5 0 .5 1 1.5

BioSC Prob.2: Phytoxic/Dose-response (Cu2+)

CUAc AB 1g/l	CuCl ₂ AB 1g/l	CuAc AD 1g/l	CuCl ₂ AD 1g
CuAc AB 2g/l	CuCl ₂ AB 2g	CuAc AD 2g/l	CuCl ₁ AD 2g/l
CuAc AB 3g/l	CuCl ₂ AB 3g/l	CuAr AD 3g/l	CuCl ₂ AD 3g/l

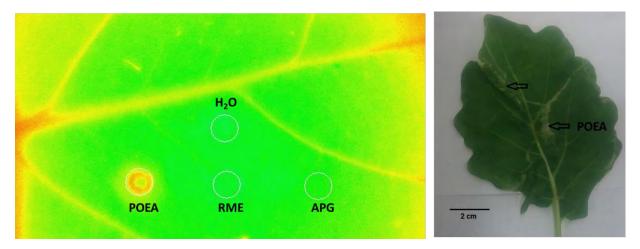
Substance	Conc. (%)	Net Cu-load (g/L)
CuCl ₂	0.22	1
CuCl ₂	0.43	2
CuCl ₂	0.64	3
CuCl ₂	1.06	5
CuCl ₂	2.1	10
Cu(OOCH ₃) ₂	0.27	1
Cu(OOCH ₃) ₂	0.56	2
Cu(OOCH ₃) ₂	0.86	3
Cu(OOCH ₃) ₂	1.42	5
Cu(OOCH ₃) ₂	2.84	10

Averaged photosynthetic efficiency for Cu-treatments on adaxial (AD) and abaxial (AB) apple leaves.

Color:

black = no photosynthesis, purple = maximum photo.

Prob.3: Additives on Cu-preparation


Some agricultural adjuvants are known to alter the physico-chemistry of plant surfaces

(Damato et al., 2017 CropProtection; Noga et al., 1986 Gartenbauwissenschaft)

induce phytotoxic effects

(Jursik et al., 2013 RomanianAgrJ; Knoche et al., 1992 CropProtection)

alter epidermal transpiration and photosynthetic activity (Raesch et al., 2018 PlantPhyBiochem)

Cu-reduction approaches

Prevention

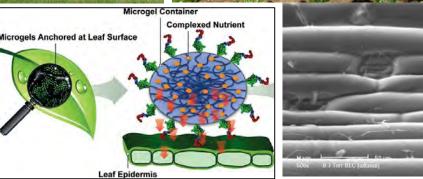
Crop management (Phytosanitation)

Breeding/ Genetic Engineering

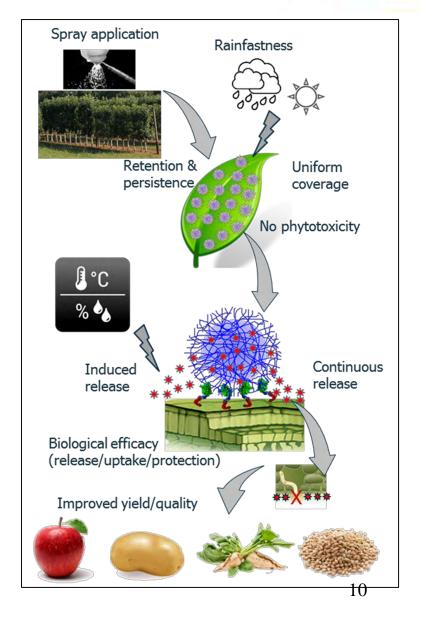
Mechanical/ sensor technology (precision application)

Cure

Alternative Preparations (- Cu)

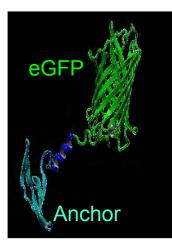

Biotechnological (Slow release/ rain-stability)

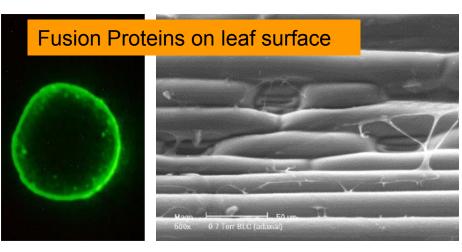
www.julius-kuehn.de


Maurer et al. (2017) Angew.Chem.Int.Ed

Slow release of Cu a.i.

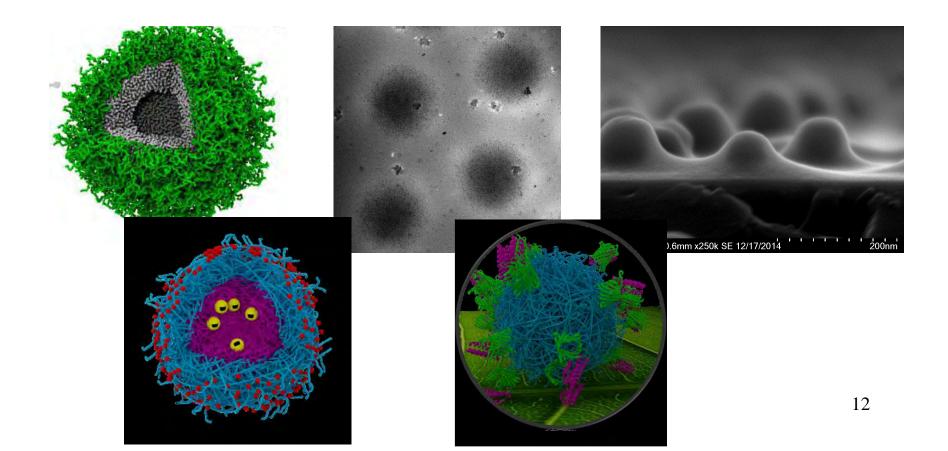
- Cu-ions are gradually released from microgel formulation.
- Continuous release provides residual protection against plant pathogens.
- Slow release of copper ions reduces risks of phytotoxicity to plant tissues. (Rosenberger, 2012, Scafolds Fruit Journal).
- Coupling of anchor peptide may enable stability against rain.




Anchor peptides (APs) ?

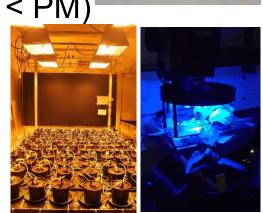
Anchor peptides are functional proteins, which promote binding to the surfaces. (Ruebsam et al., 2017 Polymer (116):124-132)

- bifunctional peptides
- biological production
- fused with marker, eGFP
- (enhanced green fluorescence proteins)

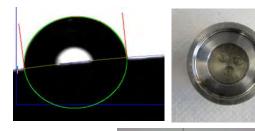


Microgel container (MG) ?

Biodegradable, hydrophilic polymer
Copper loaded
fused with eGFP-anchors

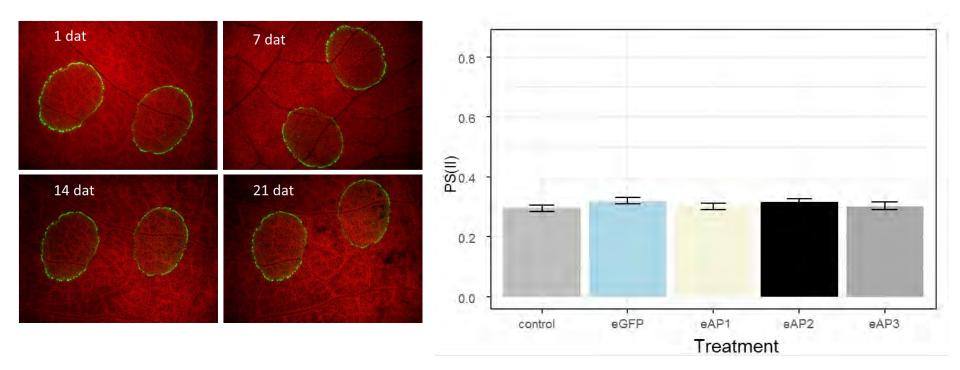


Experimental approaches: up-scaling interaction

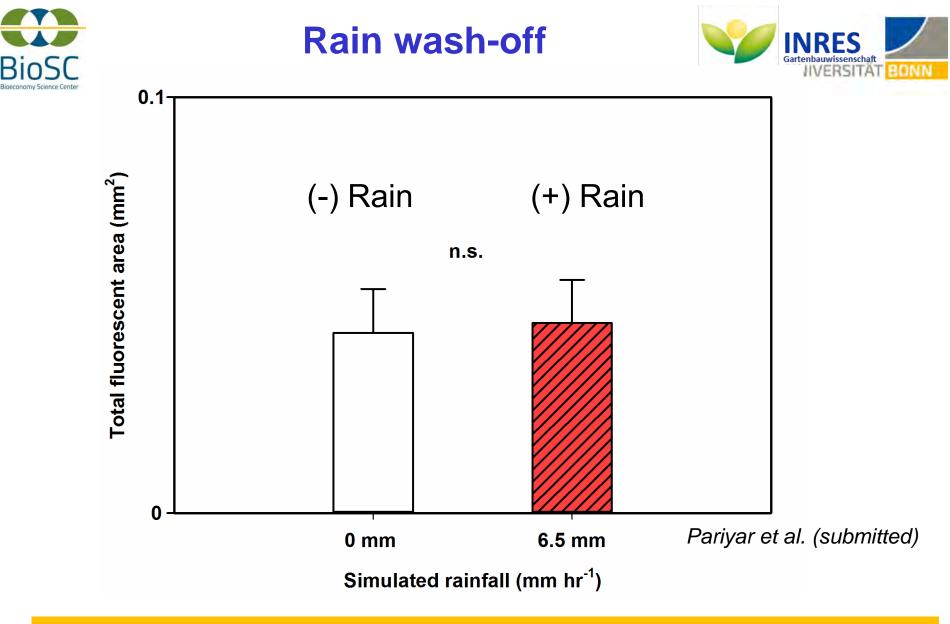

- 1. Lab scale:
 - Chl, wax, CA, ST, penetration or uptake
- 2. Controlled growth chamber: (-rain, ±UVaB, < PM)
 - Distribution, retention, UV-stability, phytotox,
 - biological efficacy and rainfastness

3. Field condition (+CKA): (± rain, +GlobRad,+UVAb, > PM)

- Distribution, Rad, UV, Temp-stability, phytotox,
- biological efficacy and rainfastness



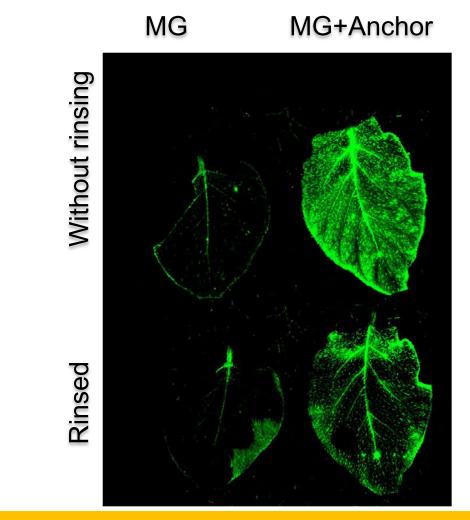
Retention and phytotoxic potential



eGFP-AP2 retention on apple leaf

PAR = 100, dat = 0 ANOVA(PS(II) ~ treatment: N = 32, P > 0.05)

The eGFP-anchor was quite stable on apple leaf and has no negative effect on photosynthetic activity.



> The AP eGFP-anchor withstand simulated heavy (6.5 mm hr^1) rainfall.

Wash off: microgel + anchor

Microgel-anchor remained in significant amount after leaf washing on potato leaf.

Summary and outlook

- 1. Anchor peptides as adhesion promoter:
- > did not impair photosynthetic activity.
- > did not show phytotoxic potential
- > increased stability against simulated rainfall.

2. The adhesion promoter can be used in a novel Cu2+ loaded microgel container to enhance slow release and stability of Cu-preparation on plant surfaces.

3. Next: Cu-preparation biological activity and stability on plant surfaces.

Acknowledgement:

Christine Schmitz (BSc. Student) Janina Zierul (MSc. Student) Anna Räsch (PhD student) Marian Weigel (MSc. student) Dr. Christa Lankes (& DLP) Knut Wichterich Libeth Schwager

Ministry of Culture and Science of the German State of North Rhine-Westphalia

Thank you for your attention !

Bonn University, INRES-Horticultural Sciences (spariyar@uni-bonn.de)