

News

Slovakian soil regenerator ekolive wins sustainable innovation award WUR

ekologe Bioleaching | Bioremediation | Biostimulants

InnoBioTech®

New bioleaching recipe based on bacteriocins and organic acids securing the immunity to wide spectrum of diseases

CA21134 - Towards zer0 Pesticide AGRIculture : European Network for sustainability

Probiotic bacteria & metabolites

Liquid nutrients Probiotic bacteria Metabolites:

ekofertile ®

lactic, butyric, acetic, propionic, formic, fatty acids, phenyllactate, bacteriocins, pyrrolidonecarboxylic acid, diketopiperazines diacetyl, reuterin, alcohols, H₂O₂, bioactive hormones such as IAA, JA and ABA

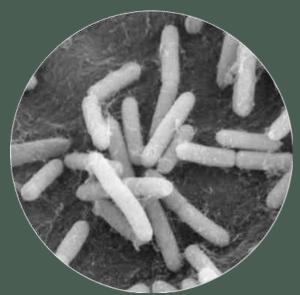
Sugar - roots - immunity - heat/drought resistance

microferfile[®] Microalgae & Thiobacillus

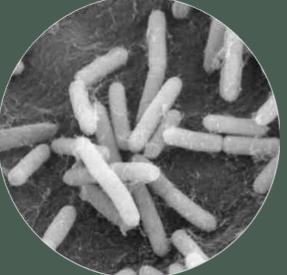
Flour-silicificated rock ritch in all essential nutrients

Thiobacillius, rusticyanin, oxaloacetic, pyruvic acid, Chlorella microalgae, hormones, sugars,liquid nutrients

Oil - protein - chlorophyl - frost/cold resistance

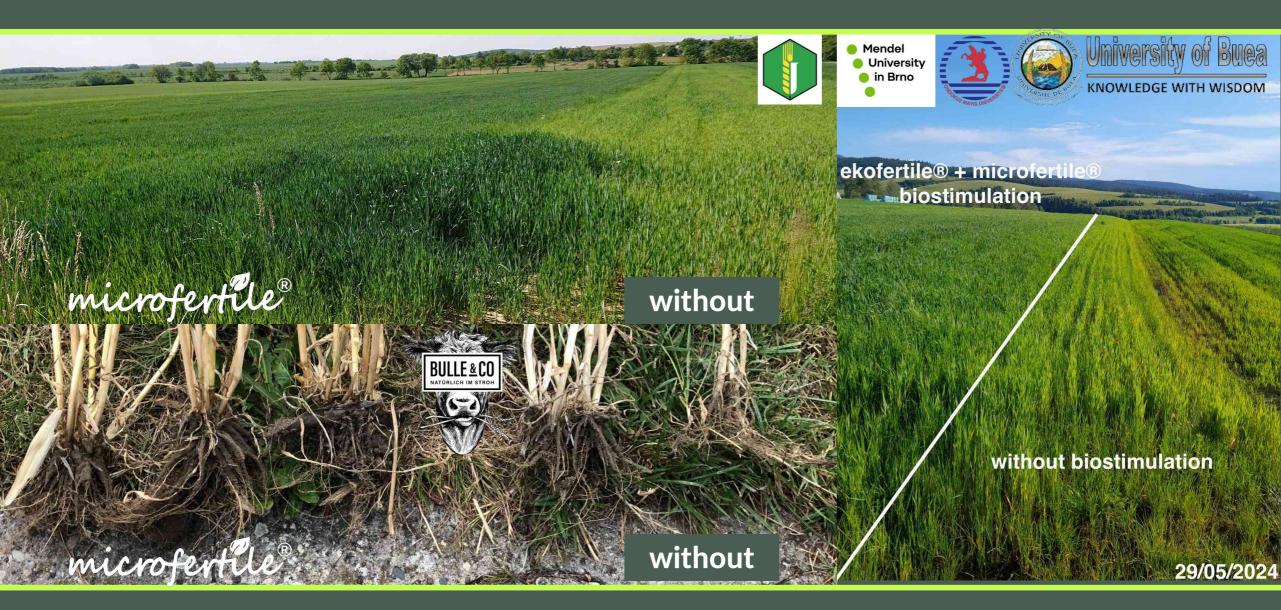


FiBL


Dutch

Input List

Sial) BIO CONTROLE


Trained bacterial symbioses that support plant growth, fix N, CO2

Effective metabolites: Org. acids, hormones, alcohols, bacteriocins, proteins

Dissolved natural minerals: Fe, Mn, Co, Zn, Mg, S, C...

Effects of the bio me stimulants

Chlorophyl and yield

27/06/2024

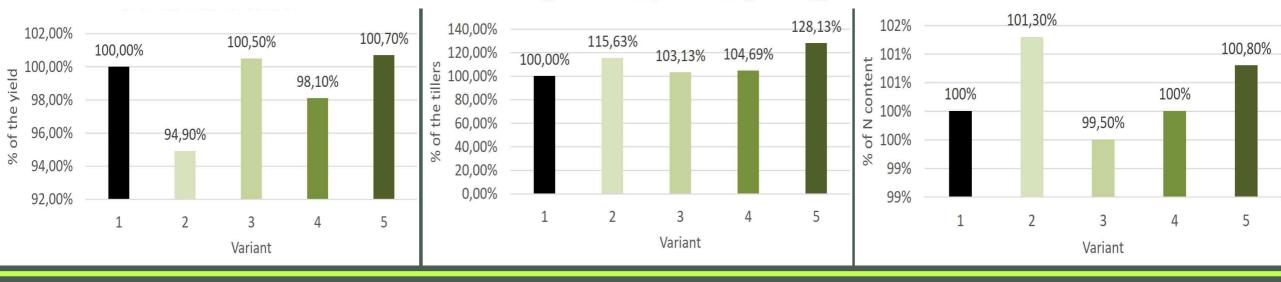
Ondokuz Mayıs University, Faculty of Agriculture, Department of Soil Science and Plant Nutrition, Samsun, Türkiye.

University of Buea KNOWLEDGE WITH WISDOM

Department of Agronomic and Applied Molecular Sciences, Faculty of Agriculture and Veterinary University of Buea.

	Total Chlorophyl (mg/g)
Control	1.96 ^e
Inorganic fert.	2.54 °
5% ekofertile [®]	2.56 °
10% ekofertile [®]	3.02 ^a
5%microfertile®	2.8 ^b
10%microfertile	3.03 ^a

	1000 grains Weight (g)	Grain yield (t/ha)	Biological yield	Head Weight (g)	Grains	Grains Weight (g)	height(cm	(cinf)area	Biomass (g)
Control	63.7 ^a	7.3 ª	19.66 ^a	1.90	23	1.46	, 69.6	41.03	60.3
Inorganic fert.	71.2ª	9.1ª	22.38ª	2.08	26	1.82	74.0	45.8	64.5
5% ekofertile®	70.0ª	9.2 ^a	22.13 ª	2.42	27	2.0	74.8	46.0	68.2
10%ekofertile®	74.4 ^a	10.8 ª	25.01ª	2.84	35	2.34	75.4	46.5	85.0


Full replacement of N, Fungicides

FIELD TESTS OF COMMERCIAL PRODUCTS EKOLIVE BIOSTIMULANTS

Mendel University in Brno, Faculty of AgroScience

High pressure of wheat stripe rust (Puccinia striiformis), replaced fungicide (prothioconazole + trifloxystrobin)

100

Kenya Plant Health Inspectorate Service

Growth

Immunity (common scab) and yield

Yield increase, no pesticides

Potatoes pathogens - scientific. lit.

Disease	Pathogens	<u> </u>	Vol
]	Ir
Late blight	Phytophthora infestans		ag ir
Early blight	Phytophthora infestans, Alternaria solani, A. grandis, A. alternata	ŀ	Kai
Fusarium wilt and Fusarium dry rot	Fusarium ambucaine, F. solani, F. graminearum, F. oxysporum	2 4 1 1	Envi http AI ag to Ne Me
Verticillium wilt	Verticillium spp.		nt J Publ
Powdery scab	Spongospora subterranean, Streptomyces spp.		Me
Bacterial wilt	Ralstonia solanacearum		Pre
Soft rot/blackleg disease complex	Pectobacterium, Pectobacterium Brasiliense, Dickeya, R. solanacearum		La (S
Common Scab	Streptomyces scabiei, S. acidiscabiei, S. turgidiscabiei		Au DO Lic Lat
Zebra chip disease	Candidatus Liberibacter solanacearum		0

Volume 45, Part 8, 2021, Pages 7725-7733

In vitro antifungal activity of *Lactobacillus* against potato Late blight *Phytophthora* infestans

Karima Alaoui^a or Zouheir Chafik^b, Mourad Arabi^c, Houssam Abouloifa^a, Abdeslam Asehraou^a, Jabir Chaoui^a, Ez-Zahra Kharmach^a

Environmental and Experimental Biology (2020) 18: 7–13 http://doi.org/10.22364/eeb.18.02

Antifungal activity of lactic acid bacteria against *Fusarium* species responsible for tomato crown and root rots

Nebia Zebboudj¹, Wassim Yezli^{1,2*}, Nisserine Hamini-Kadar¹, Mebrouk Kihal¹ It J Environ Res Public Health. 2023 Mar; 20(6): 5221. ublished online 2023 Mar 22. doi: <u>10.3390/ijerph20065221</u>

Metabolite Formation by Fungal Pathogens of Potatoes (*Solanum tuberosum* L.) in the Presence of Bioprotective Agents

Aleksandra Steglińska,^{1,2,*} Michael Sulyok,³ Regina Janas,⁴ Mieczysław Grzesik,⁴ Wiktoria Liszkowska,¹ Dorota Kręgiel,¹ and Beata Gutarowska¹

actic Acid Bacteria as Biocontrol Agents against Potato Solanum tuberosum L.) Pathogens

August 2022 · <u>Applied Sciences</u> 12(15):7763 DOI: <u>10.3390/app12157763</u> License · <u>CC BY 4.0</u> Lab: <u>Dorota Kregiel's Lab</u>

Aleksandra Steglińska · Artur Kołtuniak ·
Ilona Motyl · Show all 9 authors ·
Beata. Gutarowska

100% of the Lactobacillus tested showed an antifungal effect

against P.infestans. All Lactobacillus tested had a fungistatic effect on spore germination and mycelial growth, except L.b brevis 14 and L.b plantarum 62 which had a fungicidal effect on mycelial growth.

Results showed that all LAB used can significantly reduce growth of various phytopathogenic Fusarium species, both by cell cultures and by their secondary metabolites.

Original Paper

ISSN 2255-9582

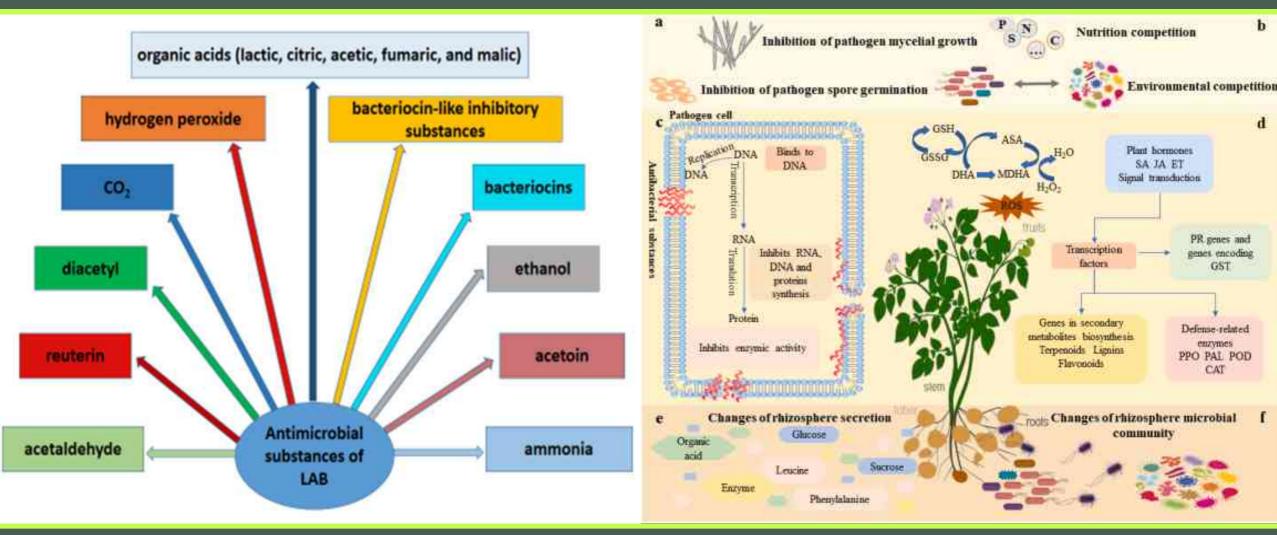
UNIVERSITY

OF LATVIA

PMID: 3698213

vironmental and

xperimental


PMCID: PMC1004910

The studies showed that the applied biocontrol agents had a positive effect on the physiological parameters of potatoes (including root growth, stem growth, gas exchange, and chlorophyll content index) and on the **reduction in the production of mycotoxins** and other secondary metabolites by Fusarium, Alternaria, and Phoma.

LAB strains against ten phytopatogens: Pectobacterium carotovorum, Streptomyces scabiei, Fusarium oxysporum, Fusarium sambucinum, Alternaria solani, Alternaria, tenuissima, Alternaria alternata, Phoma exigua, Rhizoctonia solani, Colletotrichum coccodes **The test showed a 40–90% reduction of eight potato pathogens infestation**; LAB strains were proposed as the potential biocontrol agent for the potato protection against phytopathogens.

Antimicrobial substances of LAB

Agriopoulou, S.; Stamatelopoulou, E.; Sachadyn-Król, M.; Varzakas, T. Lactic Acid Bacteria as Antibacterial Agents to Extend the Shelf Life of Fresh and Minimally Processed Fruits and Vegetables: Quality and Safety Aspects. Microorganisms 2020, 8, 952. Shi H, Li W, Zhou Y, Wang J, Shen S. Can we control potato fungal and bacterial diseases? - microbial regulation. Heliyon. 2023 Nov 17;9(12)

Immunity to bacteria, viruses, fungi

Biorenewables Development Centre

Immunity, yield drought resistance

Immunity, yield

Growth

Root system

Size from 35g to 55g

No pesticides residues!

ekolive Bioleaching | Bioremediation | Biostimulants

Size increased by 11,53 %

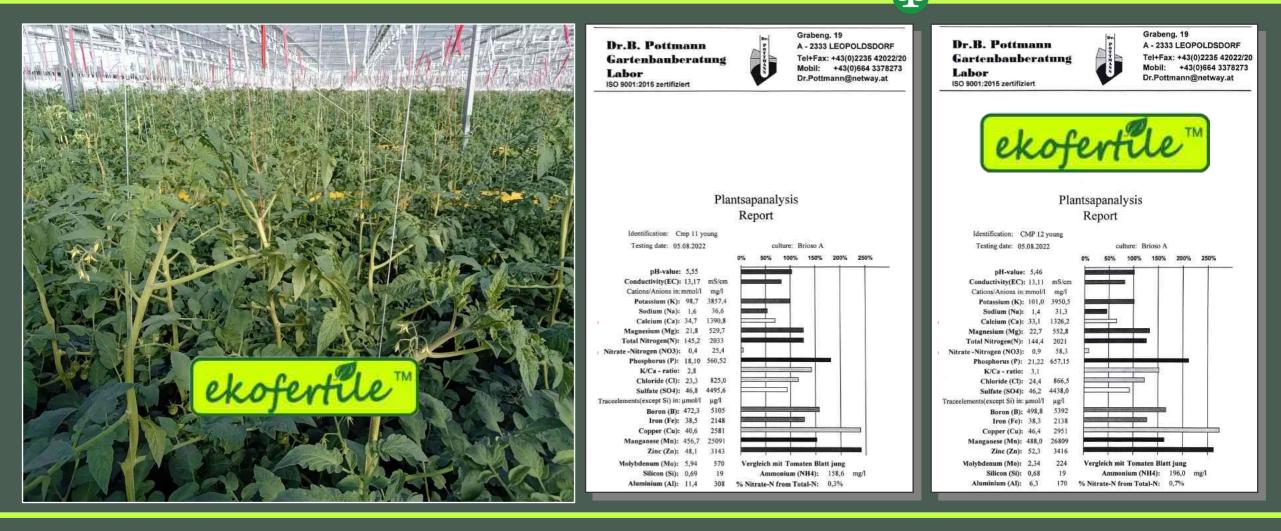
Weight increased by 21,57 %

Sugar increased by 20 %

Growth

Size and sugar, no pesticides !

Transition to eco-production


Root system, immunity to fungi

Nutrients increase, less virus

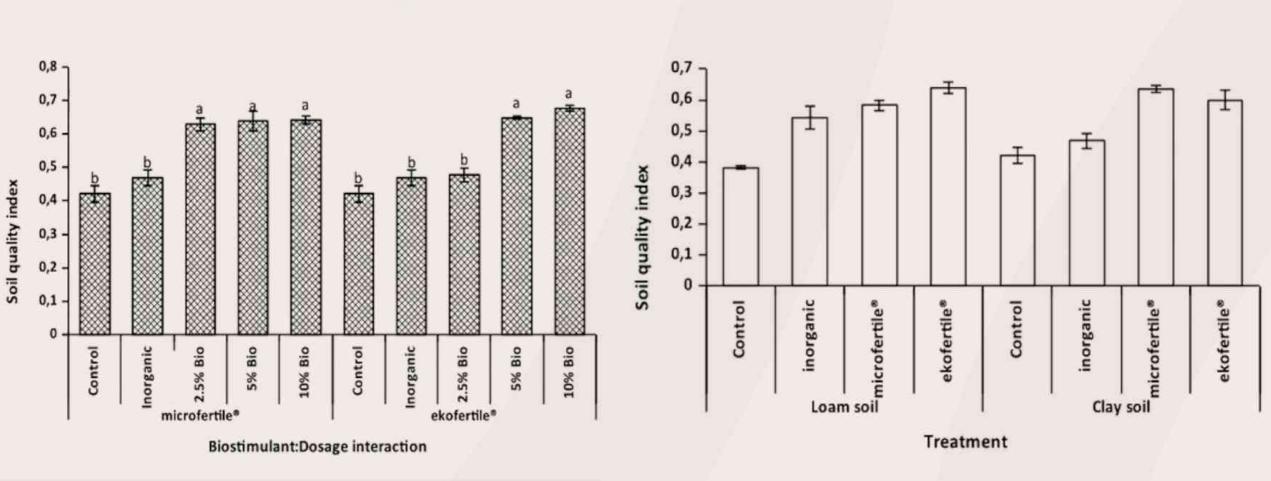
Bioleaching | Bioremediation | Biostimulants FOUR LEAVES AGRO®

Yield, shelf life increase

Kwame Nkrumah University of Science and Technology (KNUST)

Cucumber yield - 33,33 t/ha to 130,55 t/ha

Shelf life from 15 to 23,3 days



Okra yield - 11,11 t/ha to 45,28 t/ha

Increase sugar by 1,24 t/ha, profit by 250€ ekoline Bioleaching Bioremediation Biostimulants

Variant	cukornat.	úroda repy	úroda cukru	poradie	
	%	t/ha	t/ha	úroda cukru	Ekofertil plant
kontrola	16,78	69,70	11,70	2.	Porovnanie variantov a poradle úrody cukru prvý rok pokusu v Nových Sadoch
ekofertile plant	17.19 N	75,25 Ord ZUC	12,94 ker	1. 1.	Variantúroda repyúroda cukruporadie úroda cukru(%)t/hat/hat/rad cukrukontrola16,7869,7011,702.Ekofertil plant17,1975,2512,941.
		Nordzucker. Spolu. Udržateľne.			
	-				₩ Nordzucker
		A			
-					

Soil quality index

ekołczew Bioleaching | Bioremediation | Biostimulants

Soil parameters

Ondokuz Mayıs University, Faculty of Agriculture, Department of Soil Science and Plant Nutrition, Samsun, Türkiyse and

Department of Agronomic and Applied Molecular Sciences, Faculty of Agriculture and Veterinary University of Buea, Cameroon															
loam soil	pН	EC	Ca	Mg	Na	K	CaCO ₃	OC	OM	Ν	DHA µgTPFg ⁻¹	Cmic, mg CO ₂ -	ug CO ₂ -Cg ⁻¹	SQI	Biological yield (tha ¹)
		(µscm ⁻¹)		(m	(meq/100g)			%							
Control	7.78 ^{bc}	714ª	64.7ª	13.6ª	1.20ª	1.75 ^d	12.12ª	2.54ª	4.38ª	0.25ª	36.57ª	18.63ª	0.093 ^{bc}	0.38ª	19.66ª
Inorganic fert.	7.71 ^d	678 ^{abc}	68.4ª	14.9ª	1.26ª	1.87 ^{bc}	13.61ª	2.75ª	4.74ª	0.29ª	50.75ª	22.10ª	0.089°	0.54ª	22.38ª
5% ekofertile®	7.87ª	667 ^{abc}	67.0ª	19.0ª	1.40ª	1.93 ^{ab}	13.02ª	3.04ª	5.23ª	0.28ª	55.35ª	27.96ª	0.103ª	0.69ª	22.13ª
10% ekofertile ^v	®7.91ª	702 ^{ab}	71.6ª	21.3ª	1.42ª	1.99ª	14.53ª	3.07ª	5.29ª	0.29ª	55.51ª	27.54ª	0.121ª	0.64ª	25.01ª
5% microfertile®	7.74 ^{cd}	694 ^{ab}	66.9ª	18.6ª	1.46ª	1.82 ^{cd}	13.43ª	2.91ª	5.02ª	0.27ª	60.42ª	24.48ª	0.100ª	0.61ª	21.56ª
10% microfertile®	7.77 ^{bc}	595 ^d	69.7ª	20.8ª	1.43ª	1.82 ^{cd}	13.77ª	2.99ª	5.16ª	0.28ª	55.81ª	23.28ª	0.096ª	0.60ª	23.92ª

Partnerships

ekolice Bioleaching | Bioremediation | Biostimulants

Exciting Partnership Announcement: Joining Forces with Ekolive for Organic Farming

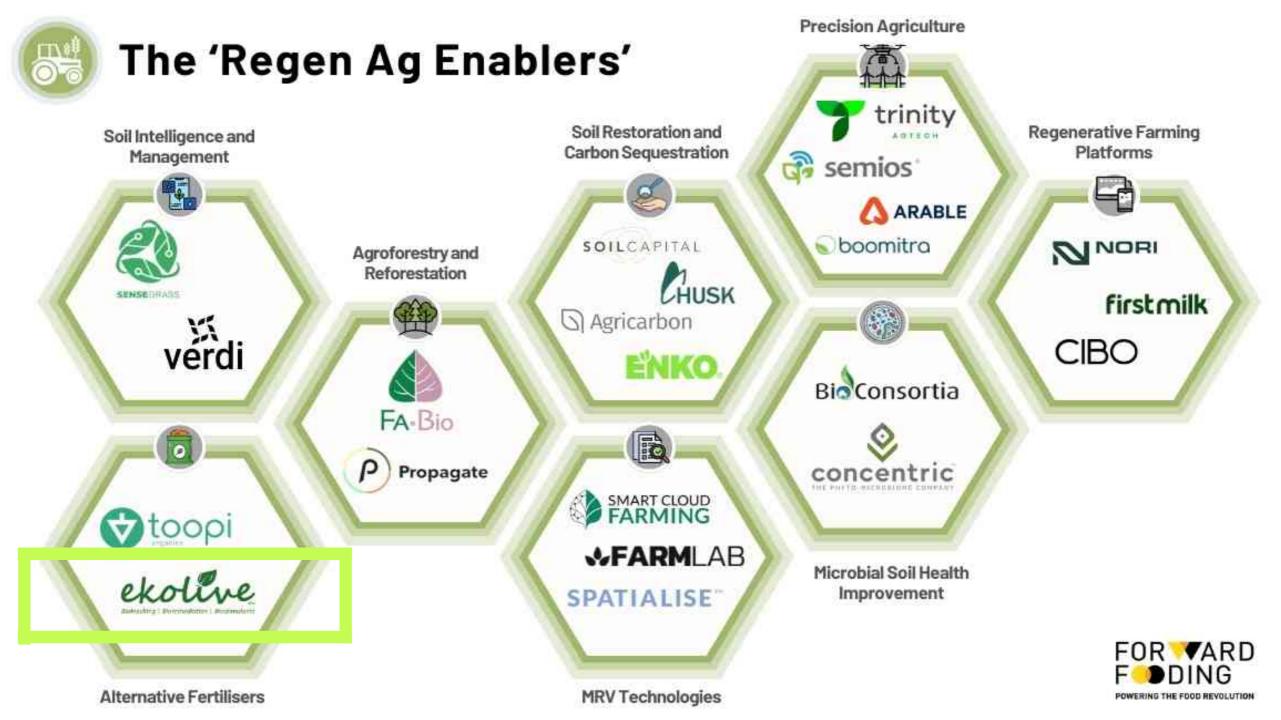
We are thrilled to announce our partnership with Ekolive, a leading Slovakian company, in our shared mission to promote organic farming practices. This collaboration marks a significant step forward in our commitment to sustainable agriculture and environmental stewardship.

without

SUCCESSFUL RESULTS IN NIGER (AFRICA) - PEPPER PLANTS

- The harvest was weeks earlier than previous seasons
- The quantity of fruits is increased from the usual 4-6 to amazing up to 21 fruits per plant!
- ✓ The size of the fruits is bigger
- The fruits were classified as more tasty

IMPORT AND SALES CERTIFICATE NIGER (AFRICA)



Import Agreement

Retail sales Agreement

WholesaleAgreement

VICTORY ORAGNICS NIGER has been registered on the 02/06/2023 in Niamey under the register Number NE-NIM-01-2023-B13-00316

Reduce the use of agrochemicals by using the replication of the natural formation of soil and nutrition of plants

www.ekolive.eu

