

AGRICULTURE 4.0 – WITHOUT CHEMICAL-SYNTHETIC PLANT PROTECTION (NOCSPS)

Ingrid Claß-Mahler, Ingrid.Classmahler@uni-hohenheim.de

Department of Farm Management

April 10, 2024

NexesB6mednerated attacks apperimental Step agesteen without chemical-synthetic plant protection products but with optimized use of mineral fertilizers and with innovative cultivation measures

SPONSORED BY THE

Federal Ministry of Education and Research

Farming Concepts

Why do we need a NOcsPS farming concept/cropping system?

- Registration restrictions for future and fewer active ingredients for CSPs
- Securing the quantitative supply of food
- Residues viewed critically by society

Challenges for NOcsPS farming concepts / cropping systems

Yield depression or yield losses

- Diseases
- Pest infestation
- > Weeds
- Economic risk
- Marketing
 - Quantity
 - Quality

Valorization

- Sustainability
- Consumer acceptance

Objectives of the NOcsPS project

Objective: Improvement for ecosystem services of agricultural landscapes

- Production of healthy food and high supply performance
- Preservation and promotion of biodiversity
- Increasing sustainability with a contribution to climate protection
- Consumer acceptance

What characteristics must a NOcsPS cropping system have in order to achieve the stated objective and goals?

Main characteristics of NOcsPS cropping sys

Agro-ecological measures

- Diverse crop rotations
- Disease-resistant varieties
- Optimized sowing patterns
- Landscape elements

Promotion of resilience, yield stability and resource protection Environmentally friendly use of nutrients and biobased crop protection products

- Mineral micro- and macronutrients
- Bioeffectors (bacteria, algae)
- Beneficial organisms

Promotion of plant growth and plant health Farm. Technologie

- Monitoring of plant groand plant health
- Application of seeds, nutrients, beneficial organisms and bio-based CSPs
- Weed control (cameracontrolled, automated weed hoe)

Increasing resource efficiency

Research at all Scales

Agriculture 4.0 – without Chemical-Synthetic Plant Protection (NOcsPS) – April 10, 2024

Experimental sites and trials

System trial, Dahnsdorf, JKI

• On-farm trials

System trial Heidfeldhof, UHOH

System trial with special crops SfG, Hohenheim

Crop rotation trial Heidfeldhof, UHOH

Conversion trial Meiereihof, UHOH

System trials

Agriculture 4.0 – without Chemical-Synthetic Plant Protection (NOcsPS) – April 10, 2024

Cropping Systems and Crop Rotations of the system trials

Cropping Sys	stem	Convent	tional (CI)	Conventional (CII)	NOcsPS I	NOcsPS II	NOcsPS III	NOcsPS IV	Organic
Sites		UH	ЮН	UHOH / JKI	UHOF	I/JKI	UH	ОН	UHOH / JKI
Crop rotation	ns	Winte	r wheat	Winter wheat I	Winter wheat I	Winter wheat I	Winter wheat I	Winter wheat I	Winter wheat I
		Ma	aize	Maize	Maize	Maize	Maize	Maize	Maize
		Soy	bean	W-Triticale / W-Rye	W-Triticale / W-Rye	W-Triticale / W-Rye	W-Triticale	W-Triticale	W-Triticale / W-Rye
				Soybean / Pea	Soybean / Pea	Soybean / Pea	Soybean	Soybean	Soybean / Pea
				Winter wheat II	Winter wheat II	Winter wheat II	Winter wheat II	Winter wheat II	Winter wheat II
				Spring barley	Spring barley	Spring barley	Spring barley	Ryegrass	Clover grass
			С	rop rotation	Seed pattern	CSP application	Miner	al fertilizer a	pplication
Conven- tional	CI-1		3-year standard		normal	standard	standard		
	CI-2		3-year standard		normal	standard	standard		
	CII		6-year NOcsPS adapted		normal	standard	standard		
Organic	ORG	6	6-year N	OcsPS adapted	normal	no		no	
	NOc	sPS I	6-year N	OcsPS adapted	normal	no	NOc	sPS adapted	standard
	NOcsPS II		6-year NOcsPS adapted		aES	no	NOcsPS adapted standard		
							NOcsPS	adapted star	idard, placed
NOcsPS	NOcsPS III		6-year NOcsPS adapted		aES	no	application using Cultan technique, bio-		
							stimulants, micronutrients, zinc, manga-		
							nese and silicon as well as algae extracts		
	NOc	sPS IV	6-year N	OcsPS adapted	normal	no	NOc	sPS adapted	standard

NOcsPS - Results

Federal Ministry of Education and Research

Winter wheat yields Dahnsdorf, JKI 2020-2022

Preceding crop: Spring Barley

Preceding crop: Legumes (Peas)

Source: Claß-Mahler et al., 2024. https://doi.org/10.5073/LBF.2023.01.05 | 12

Winter wheat yields UHOH 2020-2022

Grain equivalent unit (GE) for the crop rotation (mean 2020-2022)

	Hohe	enheim (BW)	Dah	Dahnsdorf (BB)		
Cropping system	GE/ha	GE in comparison to Conv. II. [%]	GE/ha	GE in comparison to Conv. II [%]		
Conventional II	415	100	376	100		
NOcsPS I	366	88	303	81		
NOcsPS II	358	86	270	72		
NOcsPS III	356	86	-	_ /		
NOcsPS IV	362	87	-	-		
Organic	210	51	291	77		

Source: Hermann, W., Schwarz, J., 2023. Yield data University of Hohenheim and Julius Kühn-Institut 2020 to 2022. AdZ Statusseminar, September 2023, Berlin.

Agriculture 4.0 – without Chemical-Synthetic Plant Protection (NOcsPS) – April 10, 2024

Protein content in winter wheat II

Preceding crop: Legumes

Source: Hermann, W., Schwarz, J., 2023. Yield data University of Hohenheim and Julius Kühn-Institut 2020 to 2022. AdZ Statusseminar, September 2023, Berlin.

| 15

Biodiversity results at plot scale – System trial UHOH

Conclusion and Outlook

- In NOcsPS cropping systems, reduced yields compared to conventional systems depend on the location and the position of the crop in the crop rotation
- > Yield losses in NOcsPS cropping systems were lower than expected
- > NOcsPS cropping systems have a positive effect on biodiversity

- The project is to be continued to ensure long-term effects on biodiversity, economic aspects and a reliable assessment of sustainability
- In our project, yields in organic system should be increased by organic fertilization

www.NOcsPS.de

Thank you for your attention

Ingrid Claß-Mahler

Agriculture 4.0 - without Chemical-Synthetic Plant Protection (NOcsPS) - April 10, 2024