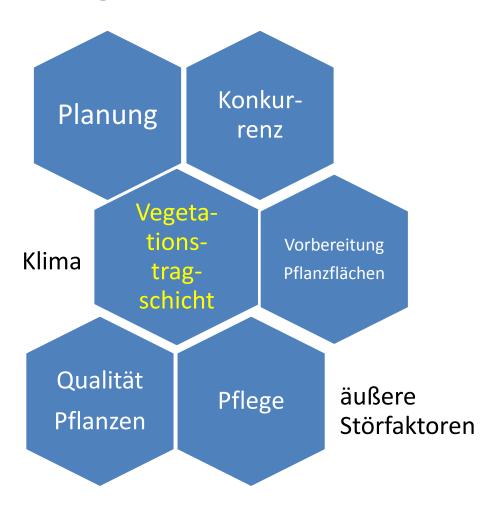


Vegetationssubstrate für öffentliche Grünflächen – eine Chance für pflegeleichte Staudenpflanzungen?


Prof. Dr. Bernd Hertle, Hochschule Weihenstephan-Triesdorf

5. Fachymposium Stadtgrün "Pflanzenkonzepte für die Stadt der Zukunft"

Vegetationssubstrate für öffentliche Grünflächen – eine Chance für pflegeleichte Staudenpflanzungen?

Einflussfaktoren auf die Entwicklung von Staudenpflanzungen

Vegetationstragschicht für Staudenpflanzungen

- » anstehendes Erdreich
- » angelieferter Oberboden
- industriell oder eigen gefertigte Substrate

Anforderungen an die Vegetationstragschicht

- Gewährleistung angemessener und ausgewogener Nährstoffversorgung
- ausreichendes Wasserhaltevermögen und Abfluss von überschüssigem Wasser
- ausreichender Wurzelraum
- keine/geringe Verunkrautung
- ansprechende Optik

Substratversuch Weihenstephan-Versuchsfragen

- » Welche Substrate eignen sich für extensive Staudenpflanzungen in München?
- » Wie beeinflussen Substrate Wasser- und Nährstoffversorgung?
- » Wie beeinflussen Substrate die Pflanzenentwicklung und Entwicklung der Pflanzengesellschaften?
- » Wie wirken sich Substrate auf den Pflegeaufwand der Pflanzflächen aus?
- » Welche Empfehlungen lassen sich für die praktische Umsetzung im kommunalen Bereich treffen?

Versuchsdaten

- » Zweifaktorielle Blockanlage (Substrate + Pflanzenmischung) mit 3 Wiederholungen
- » Blockgröße 60 m², Parzellengröße 6 m² (2 m x 3 m)
- » Substrateinbau 30 cm
- » Pflanzenmischungen Silbersommer, Blütenwoge, Sommernachtstraum
- » Pflanzung 6.7.2006

Verwendete Substrate

	Splitt 11-16 mm	Splitt 8-11 mm	Splitt 5-8 mm	Splitt 2-5 mm	Sand 0-4 mm	Ton-Torf- Mischung	Grüngut- kompost
Splitt-Sand (SS20)	20,0%	20,0%	20,0%	20,0%	20,0%		
Splitt-Torf-Ton (ST20)	20,0%	20,0%	20,0%	20,0%		20,0%	
Splitt-10% Kompost (SK10)	22,5%	22,5%	22,5%	22,5%			10,0%
Splitt-20% Kompost (SK20)	20,0%	20,0%	20%	20,0%			20,0%
Splitt-30% Kompost (SK30)	17,5%	17,5%	17,5%	17,5%			30,0%

Grundsatz: regionale Verfügbarkeit der Materialien % = Volumen-%

Geprüfte Pflanzenmischungen

» Blütenwoge

Aster linosyris, Calamintha nepeta 'Blue Cloud' (bestellt 'Triumphator'), Geranium renardii, Oenothera fruticosa 'Sonnenwende', Pennisetum alopecuroides 'Hameln', Platycodon grandiflorum 'Mariesii', Veronica teucrium 'Königsblau'

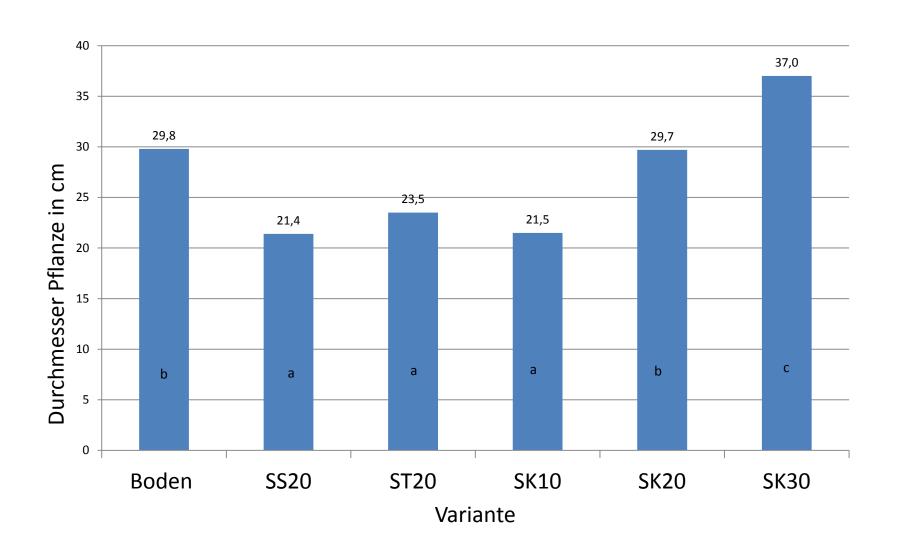
» Silbersommer

 Anaphalis triplinervis 'Silberregen', Euphorbia polychroma, Gaura lindheimeri, Geranium sanguineum 'Album', Thymus serpyllum, Verbascum bombyciferum

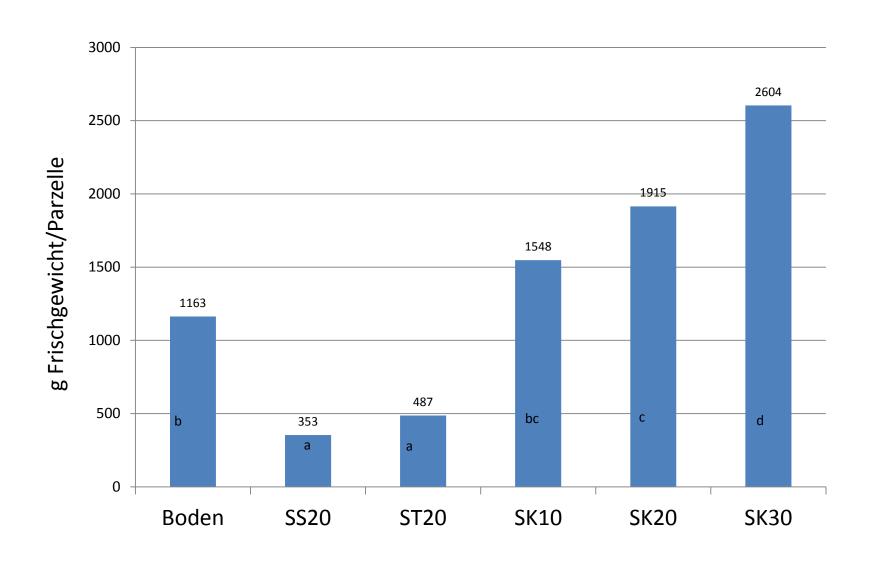
» Sommernachtstraum

 Agastache rugosum (bestellt 'Blue Fortune'), Geranium x cantabrigiense 'Biokovo', G. x magnificum, G. phaeum 'Samobor', Heuchera micrantha 'Palace Purple', Salvia verticillata 'Purple Rain'

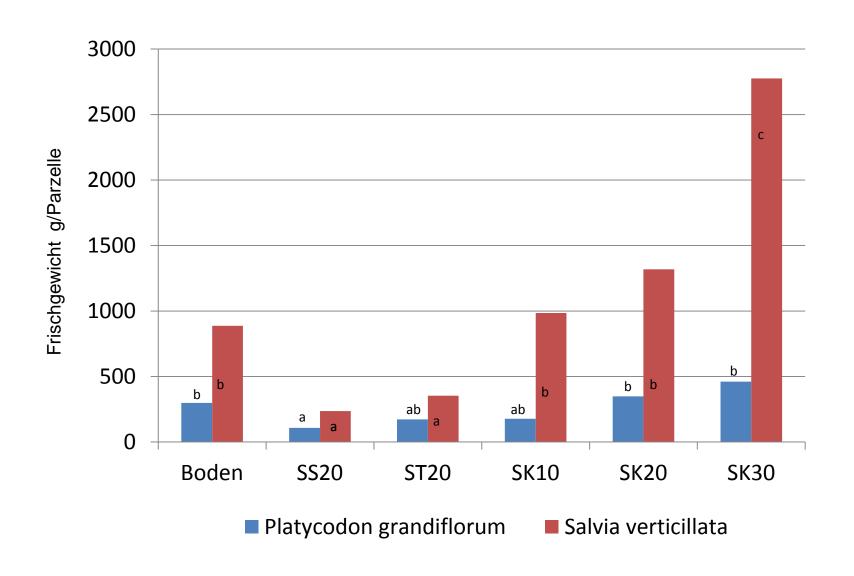
Nährstoffgehalte und pH-Wert zu Versuchsbeginn

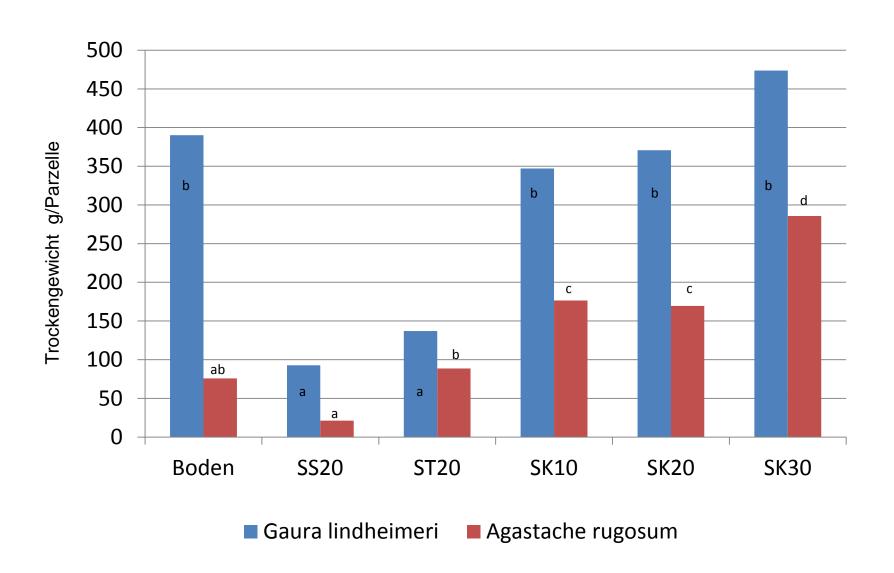

	N (CAT) mg/l	P ₂ O ₅ (CAT) mg/l	K ₂ O (CAT) mg/l	CaCO ₃	Salz (H ₂ O)	pH-Wert (CaCl ₂)
Splitt-Sand (SS20)	17*	5	35	81	0,52	8,2
Splitt-Torf-Ton (ST20)	13*	3	34	74	2,08	7,4
Splitt-10% Komp. (SK10)	10	84	202	80	0,58	7,7
Splitt-20% Komp. (SK20)	27	83	344	76	1,27	7,7
Splitt-30% Komp. (SK30)	13	145	608	70	1,14	7,6
Kontrolle Boden	8	53	111	7	0,53	7,6

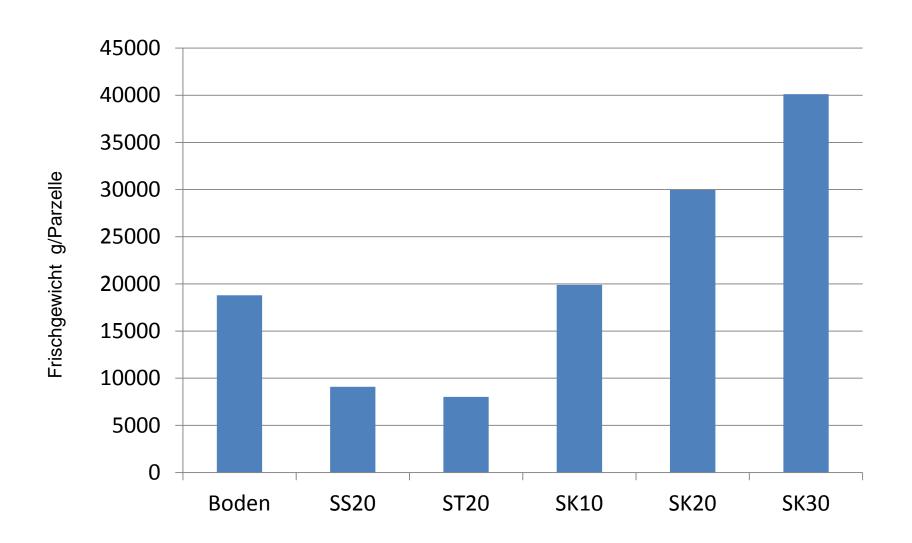
^{* -} nach Düngung mit 5 g/m² Osmocote Exact Standard 3-4 M (15-18-10-3 MgO + Spurenelemente


Physikalische Eigenschaften der Substrate

	Boden	SS20	ST20	SK10	SK20	SK30
Volumengewicht feucht (g/l)	1325	1735	1300	1445	1410	1425
Rohdichte trocken (g/cm³)	0,98	1,58	1,23	1,30	1,22	1,05
Rohdichte bei max. Wasserkapazität (g/cm³)	1,83	1,83	1,67	1,63	1,72	1,76
Rohdichte feucht (g/cm³)	1,16	1,60	1,30	1,37	1,30	1,19
Maximale Wasser- kapazität (Vol%)	43,6	10,4	21,6	13,1	24,1	34,0
Wasserdurchlässigkeit (mm/min)	0,9	219,7	59,4	372,8	67,8	7,3


Durchmesser von *Thymus praecox* am 25.10.2006


Frischgewicht *Calamintha nepeta* 'Blue Cloud' am Ende des ersten Versuchsjahrs


Frischgewicht *Platycodon grandiflorum* und *Salvia verticillata* am Ende des ersten Versuchsjahrs

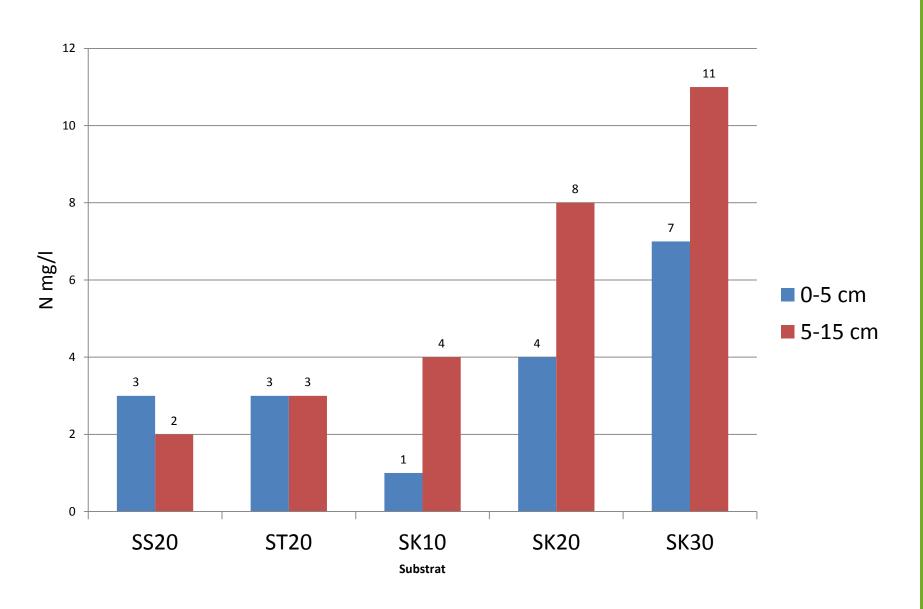
Trockenmasse von *Gaura lindheimeri* und *Agastache rugosa* am Ende des ersten Versuchsjahrs



Frischgewicht Gesamtparzellen 2010

Splitt + 30% Kompost (SK30) - 14.5.2007

Splitt-Sand (SS20) - 7.6.2009

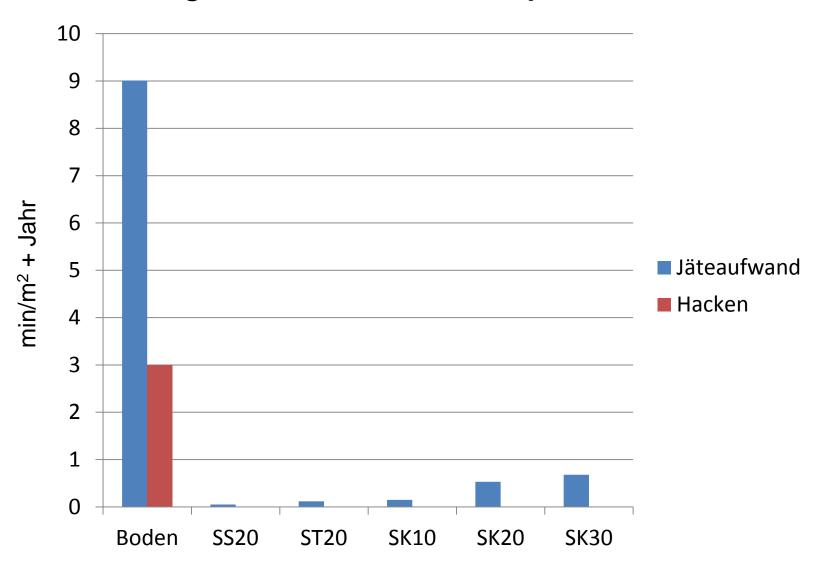

Kontrolle (Boden) – 7.6.2009

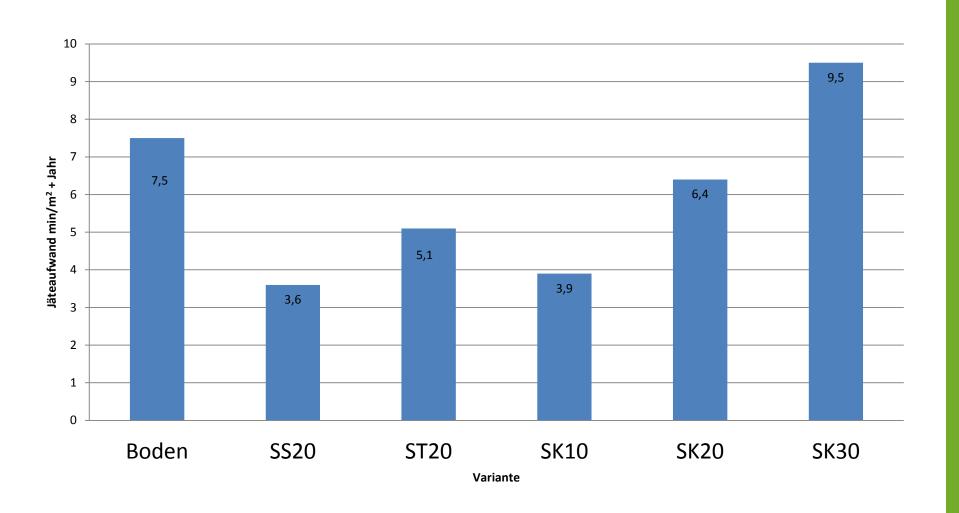
Splitt-Sand (SS20) - 7.6.2009

N-Gehalt in den Substraten am 27.4.2010

Physikalische Eigenschaften der Substrate

	Boden	SS20	ST20	SK10	SK20	SK30
Volumengewicht feucht (g/l)	1325	1735	1300	1445	1410	1425
Rohdichte trocken (g/cm³)	0,98	1,58	1,23	1,30	1,22	1,05
Rohdichte bei max. Wasserkapazität (g/cm³)	1,83	1,83	1,67	1,63	1,72	1,76
Rohdichte feucht (g/cm³)	1,16	1,60	1,30	1,37	1,30	1,19
Maximale Wasser- kapazität (Vol%)	43,6	10,4	21,6	13,1	24,1	34,0
Wasserdurchlässigkeit (mm/min)	0,9	219,7	59,4	372,8	67,8	7,3





Kontrolle Boden

Pflegeaufwand im Pflanzjahr 2006

Jäteaufwand im Zeitraum von 2007-2009



Aufbau der Vegetationsflächen in Mannheim

Stauden

Mulch(Splitt 8-16)

Vlies

Substrat (0-16)

wasserdurchlässige Folie

Untergrund

Ergebnisse kompakt

- » Substrate haben aufgrund unterschiedlicher Wasserhaltefähigkeit und Nährstoffversorgung großen Einfluss auf die Entwicklung der Pflanzen und Pflanzengesellschaften
- » mit steigendem Kompostanteil nehmen Massenproduktion und Unkrautaufkommen zu
- » Kiessplitt mit einem Anteil von 15-20% gütegesichertem Kompost für Mischungen mit trockenheitsverträglichen Freiflächenstauden geeignet
- » erhebliche Reduktion des Jäteaufwands im Pflanzjahr gegenüber Boden
- » Pflege nur bei Substraten mit geringem Anteil organischer Substanz deutlich geringer als auf gut vorbereiteten Bodenflächen

Quellen:

- » HERTLE, B.; 2012: Erfahrungen mit Substraten für Staudenmischpflanzungen, Neue Landschaft 11/2012, 6-10.
- » HAGEMEISTER, J., 2006: Eignungstest verschiedener Substratmischungen zur extensiven Bepflanzung mit Staudenmodulen. Diplomarbeit im Studiengang Gartenbau der Fachhochschule Weihenstephan.
- » KLINGER, M., 2010: Entwicklung von Staudenmodulpflanzungen in unterschiedlichen Substraten. Diplomarbeit im Studiengang Gartenbau der Hochschule Weihenstephan-Triesdorf.
- » RINTISCH, F., 2008: Eignung unterschiedlicher Substratmischungen für verschiedene Module. Diplomarbeit im Studiengang Gartenbau der Fachhochschule Weihenstephan.